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A new method for the numerical simulation of three-dimensional incompressible flows is 
described. Our vortex-in-cell (WC) method traces the motion of the vortex filaments in the 
velocity field which these filaments create. The velocity field is not calculated directly by the 
Biot-Savart law of interaction but by creating a mesh-record of the vorticity field, then 
integrating a Poisson’s equation via the fast Fourier transform to generate a mesh-record of 
the velocity field. The computed scales of motion are assumed to be essentially inviscid. 
Viscous of subgrid-scale effects are incorporated into a filtering procedure in wave vector 
space. Results of tracing a periodic array of single vortex rings are compared with a Green’s 
function calculation. The agreement is very good. 

1, INTRODUCTION 

In this paper, we describe a new method for the numerical simulation of three- 
dimensional incompressible flows. Our approach differs from other numerical fluid 
simulations in that, rather than solving the Navier-Stokes equations on an Eulerian 
mesh, we emphasize the vertical part of the flow by solving the vorticity equation, 
using a hybrid method. Making use of the fact that vortices naturally preserve their 
identity, we follow vortex filaments in a Lagrangian frame. An Eulerian mesh is used 
only to compute the velocity field required to move the filaments. 

Historically, the first numerical calculation using a two-dimensional discrete vortex 
element method was made by Rosenhead [ 11, using a few vortices. Since then, the 
same method has been applied to various two-dimensional shear flows. This work is 
summarized in a literature survey by Fink and Soh [2]. Most of these efforts were 
directed toward understanding the time evolution of finite-area vorticity regions or the 
initial break-up of the laminar shear layer (usually done for short times or small 
regions with periodic boundary conditions). Some of these recent computer 
calculations involved thousands of vortices [3,4,5]. Other important flows were also 
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considered: two-dimensional turbulence [6-91, separated flows [lo], and stratified 
flows in both homogeneous and porous media [ 11,121. 

A flow field can be represented to any required precision by a sufficiently large 
assembly of discrete vortices and the time evolution of the field can be transcribed 
into a kind of particle mechanics of these vortices. If one integrates analytically, in 
two or three dimensions, the Poisson’s equation relating the velocity field to the 
vorticity field [see Eq. (2.4)], the result is a direct Biot-Savart integration or 
summation over all the vortices making the vorticity field [ 131. With N vortices, a 
time step in a direct summation scheme will involve evaluating N- 1 terms for the 
velocity which displaces a single vortex, and thus on the order of N x N terms per 
time step. For large N, such a code will be very time consuming. Thus, the two- 
dimensional mixing layer calculation of Ashurst [7], where the number of vortices 
increased during the calculation from 1 to 800, required 250 hours of computing 
time on a CDC 6600. Understandably, previous direct summation calculations were 
much more modest. Michalke [ 141 studied the linear and partly nonlinear instability 
of 72 vortices arranged on three close parallel lines. Acton [ 151, still in two 
dimensions, studied the same problem, but with 96 vortices arranged initially on four 
close sinusoids, and ran for a longer time. 

An alternative method for time-stepping a set of vortices in two dimensions, the 
cloud-in-cell (CIC) method as it is sometimes called, was described by Christiansen 
[ 16,5, 171. In this algorithm, the basic variables are still the positions and strengths 
of the vortices, but now a grid is laid down in the plane perpendicular to the vortex 
filaments and covering the flow area. At every time step, a grid vorticity is generated 
by distributing the vorticity from each vortex over the four neighboring grid points 
suitably weighted. This grid vorticity is then used to generate a grid stream function 
by solving Poisson’s equation. The stream functions is differenced on the grid to 
produce a velocity field, which is finally interpolated back to the vortex positions. 
The advantage of this apparently rather elaborate detour is that the Poisson inversion 
can be accomplished by Fast Fourier transform techniques. If the grid is M X M, this 
is an order M* log, M calculation. In a typical 20 calculation, the number of grid 
squares M x M is of the same order of the total number of vortices N and thus the 
FFT requires on the order of N log, N operations per time step. The smoothing and 
interpolations take of the order N operations. When N is large, N log, N is 
considerably smaller than N x N. 

A disadvantage of the could-in-cell method (as against the direct interaction 
method) is having to account for grid effects. To counteract unwanted grid effects, 
Wang [ 181 did some extensive two-dimensional simulations in which he improved on 
the CIC method by first, using cubic splines for interpolation (i.e., referring to the 
nearest 16 grid points for each vortex node rather than to the nearest 4) and second, 
applying a Gaussian shape factor or “filter” in wave vector space. The filter provides 
each vortex with a finite core and distributes vorticity within the core with cylindrical 
symmetry. The insensitivity of the resulting potential contours or flow lines to the 
underlying grid is shown in some diagrams presented in [IS]. 

In three dimensions, it is natural to represent the vorticity field as a collection of 
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vortex filaments, each one following a three-dimensional space curve. The direct 
summation scheme has been applied to a small number of simple vortex filaments 
[ 19-221, but at considerable cost because of the time required to sum all the mutual 
Biot-Savart interactions between the many elements in all the filaments. In our 
method, the velocity field is not calculated directly by the Biot-Savart law of 
interaction but by creating a mesh-record of the vorticity field, then integrating a 
Poisson’s equation to generate a mesh-record of the velocity field. As in two- 
dimensional problems, the “cell” or “mesh” method speeds up the calculations of the 
interactions and allows the three-dimensional vortex tracing method to be applied to 
a space densely filled with vortex filaments, each filament being resolved in fine detail 
along its length. Filtering in wave vector space is used to provide each vortex 
filament with a finite core thereby minimizing unwanted grid effects. 

An outline of the remaining sections of the paper is as follows: The fundamentals 
of vorticity dynamics relevant to our technique are discussed in Section 2 and a 
description of the computational method is given in Section 3. In Section 4, the 
results of computational experiments involving vortex rings are presented and 
discussed while conclusions are given in Section 5. 

2. BASIC PRINCIPLES 

We assume unbounded incompressible flow, fully periodic in each of the three 
dimensions. Starting with the incompressible Navier-Stokes equations where we 
assume no external forces, the equation of motion of the velocity field u is given by: 

Du -= 
Dt 

- +vp + vv2u, (2.1) 

where p, p and v are respectively the pressure, density and viscosity and where the 
“material acceleration” is defined: Du/Dt G (h/at) + u . Vu. Rather than solving 
(2.1) on an Eulerian mesh, we want to trace the motion of the vortex filaments in the 
velocity field which these filaments create. The collection of vortex filaments in each 
periodic box forms the vorticity field, w  = V x u. We therefore solve the incom- 
pressible vorticity equation, obtained by taking the curl of (2.1): 

*DO -= 
Dt 

0 * vu + vv20. 

By using the equation of continuity, 

we find that the velocity field can be determined kinematically from 

(2.2) 

v2u = -v x 0. (2.4) 
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In the following, we use the large-eddy simulation approach [23] where one 
calculates directly the large-scale motions and models approximately the effects of the 
finer subgrid scales. In the present method, the computed scales of motion are 
assumed to be essentially inviscid. Any actual viscous effects are on a subgrid scale 
and are incorporated into the filtering procedure described in more detail in the next 
section. 

From Helmholtz’s theorem, the motion is purely kinematic and the vortex 
filaments follow material lines. Also, by definition of o, V . o = 0, and Kelvin’s 
theorem states that, in an ideal fluid, the velocity circulation r around a closed 
“fluid” contour is constant in time, that is DI'/Dr = 0 where 

(2.5) 

Here A is the cross-section area of the filament. In particular, the effective vorticity 
field o in each periodic box representing the large scale motions is taken to be: 

o(r, t) = ((I G(r - r’)<3(r’, t) dr’, (2.6) 

where G is a filter function and the unfiltered vorticity 3 is generated by the space 
curve ri(& t) as follows, 

6(r - ri(<, t)) s d< 

and is highly singular. Here < is a parameter which traces each filament along its 
length at any instant in time. The summation is over individual vortex filaments.’ The 
representation of the vorticity by (2.6) and (2.7) is a natural generalization of 
representations used in two-dimensional vortex methods. Using (2.7) above is the 
analog of the point vortex representation; combined with (2.6), we have the analog of 
the representation by vortices with finite cores [31]. The evolution of each space 
curve is determined from the continuous velocity field by 

h,(L 0 _ 
at sll G(r, - r’) u(T’, t) dr’ (2.8 > 

with u determined from (2.4). 
In summary, equations (2.6), (2.7), (2.8), and (2.4) describe the physics of vertical 

flow which must be discretized for solution on the computer. 
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3. DESCRIPTION OF COMPUTATIONAL METHOD 

For a variety of reasons, the vorticity field and other fields are conveniently 
expressed in Fourier space, just as in the more successful numerical attacks on the 
turbulence problem by solution of the Navier-Stokes equation [24-271. The main 
reason field components are recorded in spectral form is that calculus (differentiation 
and integration) translates to algebra (multiplication and division) in the spectral 
domain. Of course, this implies periodicity in all three dimensions [38]. 

Working in Fourier space also provides additional benefit from the control one 
obtains over the filtering operation: The convolution integral in (2.6) becomes a 
product in Fourier space. Translating in Fourier space the basic principles given in 
the previous section, we can draw a computational chain of operations. Starting with 
a given set of vortex lines with their circulation r, we want to find their displacement: 

The numbers refer to the equations of the previous section or their equivalent tran- 
slated to Fourier space representation. The different parts of the scheme will now be 
explained, namely the numerical modeling of the vortex filaments, the interpolations 
that are required in using the fast Fourier transform, the shaping of the vortices and 
the time-stepping procedure. 

1. Filament Modeling 

In our model, one describes each vortex filament by a succession of closely spaced 
markers. Considering a single vortex in (2.7), we have 

at an instant t, where r is given by (2.5). Taking the Fourier transform, we obtain 

If we now discretize r into piece-wise linear sections, 

'(t)j,j-1=&j+ (l -Orj-13 o<t< 1, 

where the error is O(]rj - rj- i 12), then 

s(k) = 2 I’ 
I 

I (rj - rj-,) eeik’““jJ - Id*, 
j=1 0 

(3.1) 
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where m is the total number of markers describing the filament and r,,, = r,,. 
Integrating (3.1) and letting k . [(ri - rj... ,)/2] = sj, we obtain: 

A(k) = r f (rj - r,- ,) exp(-lk . +(r, + rj- 1)) T 
/=l 

(3.2) 

The labor of evaluating the trigonometric functions for all sections of the filament in 
(3.2) to obtain one Fourier component i(k) would be prohibitive if each vortex 
required at each time step the evaluation of all the Fourier harmonics k. It is more 
efficient to first distribute vorticity onto a grid according to an interpolation process 
and then perform an FFT. Considering Eq. (3.2), we see that this procedure requires 
two steps. First, we need to express sin sj/sj as a linear combination of eeik.I where f 
is a function of r, and ‘i-l. Secondly, the resulting trigonometric exponential 
functions should be approximated onto the mesh in Fourier space so that the FFT 
can be performed. To obtain a suitable approximation to sin ej/sj, we simply evaluate 
the integral in Eq. (3.1) by Gaussian quadrature [28] to obtain, 

&(k)=l- s m (rj-2rjp1’ x {exp(-zk. f[(l + 3-“*)rj+ (1 -3-“*)rjP1]) 
/=I 

Indeed this is equivalent to the approximation, 

e sin &j - -icj3-U2 + eicj3-W2 

= cos 2 - 

&j 2 ( 1 3v2 

(See the Appendix for derivation.) We now need to replace the pure harmonic e-ik.r 
for arbitrary r by an approximant to be evaluated on the discrete spatial mesh. 

2. Interpolation 

In each of the three dimensions, we use quadratic spline interpolation to approx- 
imate elk* in terms of eikn. In particular, efkx is represented in the general interval 
n - i < x Q n + + as the superposition of three parabolic arcs as follows: 

eikx N S(k)[+(x - n + *) I 2 eik(n+ 1) + (1 - (x _ n)*) &kn + f(n + f - 4’ eik(n- l)] 

or (3.3) 

(1 +4x2) k 
2 sin* - + ix sin k 

.2 1 . 

Note that the choice 4/(3 + cos k) for S(k) would force agreement between function 
and approximant at x = 0. But since we know the function to be approximated 
throughout the interval in principle from its Fourier harmonics, we can make a less 
biased choice of S(k). We can minimize the mean square error over the interval by 
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choice of S(k). Using standard procedures, one finds that S(k) P(x) deviates from elk’ 
with the least mean square error when 

S(k) = I::, P(x) eeikx dx//“’ P’(x) dx 
- l/2 

(3.4) 

and the mean square error is then 

v* 
l- _ ,,* P(x) epfkx dx l’* P’(x) dx. 

- 112 

Here P(x) is the polynomial in brackets in (3.3). With our new choice of S(k), we 
can define the second-order spline as that second-order polynomial which joins 
smoothly (up to the first derivative continuous) with the corresponding polynomial in 
the adjacent intervals and which departs from the given function with the least mean 
square error. 

Equation (3.4) can be evaluated to yield 

S(k)= (+sin+)‘/(l -sin2++$sin4+). 

The expression for the mean square error now becomes 

1- ($sin+)6/( 1 - sin* 4 + & sin4 + 
) 

. 

The square root of the mean square error is plotted versus k in Fig. 1. One finds that 
for small k, the rms error is of order k3, specifically the rms error is 

3 

12(;o)v2 N .0058 k3. 

As mentioned previously, the purpose of interpolation is, in fact, to distribute 
vorticity onto a grid. Figure 2 illustrates a one-dimensional model where three 
quadratic spline distributions of vorticity with different total amplitudes are shown to 
have their centers located at positions Q, b, and c. It also shows that three nearest grid 
points to each of the centers will share the vorticity distribution according to the 
spline function weighting on them. In our example, grid points N - 2 to N will share 
the vortex “a” with grid point N - 1 receiving the largest weight. Similarly points 
N - 1 to N + 2 will share the vortices “b” and “c.” It is the array of this vorticity 
distribution that will be transformed to calculate the potential array and velocity field 
array. The quadratic spline weighting is superior to the zero-order weighting (NGP 
model) and first-order weighting (CIC model) in the sense of creating less field noise 
and resulting in smoother simulation functions [29,30]. This is an obvious 
conclusion since vorticity is now distributed among three grid points instead of one 
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FIG. 1. Square root of the mean square error versus k for nearest grid point, linear and quadratic 
interpolation of a pure harmonic. 

N-2 o N-l b N c N+I N+2 

FIG. 2. Quadratic spline vorticity distribution of three typical vortices on their nearby grid points. 

or two as in the other models and the interpolated distribution is quadratic rather 
than a piece-wise step function, or first-order linear function, with discontinuous 
derivatives. There is also a reduction of aliasing. In three dimensions, the three 
nearest grid points in each dimension (27 in all) will share the vorticity distribution 
according to the spline function weighting on them. 

3. Shape Factor 

The choice of the shape factor or filter function G(r) [Eq. (2.6)], which gives the 
vorticity distribution within the core of each filament, is dictated by several con- 
siderations. 

Firstly, it is intuitively obvious that low ] k ] harmonics are interpolated by a certain 
tabulation mesh better than high ] k/ harmonics. Aliasing sets a limit at k,,, = n/d 
for each component of k (d = mesh spacing): any harmonic with a k-component 
higher than this will be misinterpreted by the interpolator as a corresponding lower 
harmonic with all k components lying within the interval (-x/d, n/d). In effect, the 
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interpolator will add a mixture of overtones to the approximation of a pure harmonic. 
A reduction of aliasing was already achieved by going to a higher-order interpolation 
than linear. Another way to suppress aliases is to deemphasize harmonics in the 
range near k,,, by filtering them out. 

Secondly, there are good reasons for introducing shapes of the interacting elements 
even when no interpolation is used at all. It was pointed out [ 3 1 ] that, because high 
induced velocities occur when two vortices come close together, unless a finite core 
radius is used, the accuracy of the discrete vortex element does not improve as more 
and more elementary vortices are employed to represent a given vorticity field. Also, 
it is well known that nonlinear terms produce a cascade to higher harmonics that 
cannot be represented by the mesh. One way to suppress these harmonics is to use a 
cut-off or shape factor. 

Finally, in our simulation so far, we use a cubical mesh system, that is Ax = Ay = 
AZ = 1. Therefore, we note that the shape factor G(r) should be isotropic in space: It 
should know no coordinate axes. Hence we choose e = e(] kl) to be isotropic in k- 
space, i.e., a function only of 1 k ]. (The compensating adjustment factors S*(k), on the 
contrary, must be functions of the components of k.) Since one has an a priori 
freedom of choice as regards G(r) or C?(] k I), one is at liberty to tailor C?] k I) so that it 
deemphasizes the poorly interpolated (badly aliased) harmonics near (k ( = rr. A sharp 
cutoff in Fourier space would be undesirable (no matter how perfectly each harmonic 
is evaluated) because it surrounds the objects that interact via the field with lobes in 
real space. The lobes decay only weakly with distance, like A over the distance. If, 
instead, the spectrum is brought to zero more smoothly, say at least parabolically, 
such lobes become attenuated more strongly. 

In light of the above considerations, a Gaussian profile for e(]k]) seems a 
reasonable choice. In addition, Tung and Ting [32] and Saffman [33] found that the 
distribution of vorticity across the core of a viscous vortex ring with small cross 
section is Gaussian. Thus, we choose an approximately Gaussian profile, equivalent 
to a Gaussian shape in real space, but brought to a strict zero at some maximum ] k I. 

To summarize the interpolation and shaping operations, we start with a vorticity 
field having singularities on each filament, Eq. (2.7). The use of a grid with spacing A 
and Fourier transform methods eliminate the singularities since only harmonic 
numbers up to R/A are recognized and the vortices are thus automatically broadened 
by what is approximately equivalent to a rectangular filter in Fourier space. In 
addition, further shaping of the vorticity distribution is achieved by explicit 
application of another filter whose representation in Fourier space is e(l kl). The 
effective vorticity field o is then represented by a filtering operation on the singular c3 
as shown by (2.6) where G now indicates the transverse profile of the vortex 
filaments. We choose G(] k I) to be almost Gaussian (coming to zero smoothly before 
the spectrum would cut off more drastically), and then each filament acquires a 
transverse profile in real space that is nearly Gaussian. The shape factor G is applied 
again when one calculates the evolution of each space curve in time from the 
continuous velocity field u(r, t), Eq. (2.8), with u determined from (2.4). In practice, 
this means applying the square of the transform of G as a filter in Fourier space. The 
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use of the filter C? provides damping of the high wavenumber components of the field, 
damping that would otherwise occur through subgrid scale dissipation or by viscous 
dissipation [23]. 

4. Solving 

If we now consider Eq. (2.4) in Fourier space, the velocity field at the location of a 
“vortex-marker” is obtained by weighting the entries in the table of spline amplitudes 
with the spline weights. The latter are deduced from the relative position of a vortex 
in its interpolation cell. The spline amplitudes are obtained from the velocity 
harmonics by first multiplying with a factor S(k,) and two similar factors which have 
k, and k, in place of k,, then calling a three-dimensional FFT on the resulting array. 

The same factors appear again when the displacement of the kth vorticity 
harmonic is calculated. The interpolation can be done for the sum of all the 
harmonics, and the table into which one interpolates consists of the FFTs of the 
harmonics of vorticity, modified by the factors ensuring best mean square tit in each 
dimension. 

In going from the table of spline amplitudes for vorticity to the table of spline 
amplitudes for velocity harmonics, one therefore has not only to perform a forward 
and backward FFT, with Eq. (2.4) in Fourier space in between, but one must also 
introduce the square of the spline fitting factors indicated previously. 

Similarly, we mentioned that any vorticity shaping factor should be introduced 
both when the local velocity field action on the distributed vorticity cloud is 
evaluated and when its excitation of the vorticity harmonics is accumulated. In both 
cases, one could perform a convolution in real space, but it is much quicker to 
replace this by a multiplication in Fourier space. The square of the transform of the 
shape factor is therefore introduced along with the above mentioned spline fitting 
factors in the course of solving the equations for the velocity field in Fourier space. It 
is convenient to introduce the (squared) shape factor along with the inverse Poisson 
operator l/l k]*. In our present 163 code there are only 64 possible different values of 
1 k]* in the sph.ere ]k ] < k,,,, so any function of ]k] can readily be pretabulated [39]. 
The schematic description given below summarizes the algorithm. 
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5. Time-Stepping 

So far in the code, we have been using the well known leap-frog method with the 
first step generated by Euler’s method. This method is unstable [34,35] but was used 
mainly to test our code. In fact, we already noted the instability of this scheme in our 
two-ring experiments. 

Nevertheless, used with an occasional forward Euler step, it seems to be possible to 
suppress the weak instability associated with leap-frog differencing [ 19,361. For the 
computed solutions described below we used an Euler step every 20 time steps. 

4. RESULTS OF THE COMPUTER EXPERIMENTS 

The numerical solution of the scheme described in the previous sections for 
different initial conditions were carried out on the CDC-7600 computer at 
NASA-Ames Research Center. The computing time per computational time step to 
move a vortex made of m markers was approximately 0.34 t m/5000 CPU sec. All 
calculations were done on a 163 mesh and with leap-frog stepping in time that 
involves only one evaluation of the derivative per step [39]. 

A first experiment was done on a single vortex ring of radius R about the z axis. 
Its center is initially located at (8,8,8) in our mesh and thereafter moves along the z 
axis. The circulation is r= 2 and a fixed At = 0.03 is used. Each ring is discretized 
by 360 markers (m = 360). Therefore the maximum error in the discretized represen- 
tation of r(r) (see Section 3.1) is (1 - cos(rr/360)) R = (0.00004) R. In particular, we 
investigated the initial speed of the vortex ring as a function of radius and position 

..,, , , 9,. \ . . . . . 
0.5 1 1 1 * 1 1 - 1 1 ’ ’ ’ ’ ’ ’ 4 

0.5 3.6 6.5 9.5 12.5 IS.5 
Y 

FIG. 3. Projection on (v-2) plane (x = 6.5) of the velocity field in the middle of the cells for a single 
vortex ring (R = 4) centered at (8,8,8) in a 16 x 16 x 16 mesh. 
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FIG. 4. Periodic array of single vortex rings, all having the same circulation. 

around the ring and the time evolution of the shape of the ring. Figure 3 shows the 
initial velocity field projected on the (v - z)-plane at x = 6.5. 

To check the accuracy of our mesh technique we also computed the initial speed of 
the vortex ring using a continuum or Green’s function approach. Since the filter we 
use in the mesh method is approximately Gaussian we consider a single vortex ring of 
Gaussian cross section. Following the procedure as deftned by (2.6~(2.8), we obtain 
as its filtered velocity of translation in free space 

(4.1) 

where a = ]r - r’ //2%, u is the radius of the cross section or the width of the 
Gaussian filter and f(a) = 271-“2ae-a2 - erf(u). If c2 Q R2, (4.1) can be approx- 
imated to yield 

$=-&[ln($)-C]e,, 

where C = 1.058 and e, is the unit vector in the direction of translation z [ 371’. To 
(4.1), we then add the Biot-Savart contributions of the periodic images. 

’ Note that the actual speed of a thin vortex ring with a gaussian distribution of vorticity has been 
calculated by Saffman [33] and is given by the above formula but with C = 0.558. The difference is due 
to the fact that Saffman’s result is based on the collective motion of an infinite number of vortex tubes 
with internal interaction between the filaments whereas our result represents the speed of a single 
computational ring filament. 
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FIG. 5. Velocity of translation versus the angle 0 around the ring for a periodic array of single vortex 
rings. Radii R = 6.0 and R = 6.5 are shown. r= 2.0. 
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FIG. 6. Velocity of translation (8= 0’) versus radius for a periodic array of single vortex rings. 
I- = 2.0. 
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FIG. 7. Velocity of translation (e = 459 versus radius for a periodic array of a single vortex rings. 
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FIG. 8. Displacement of a single vortex ring (R = 4) in a periodic space at four instants. r= 2. 
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FIG. 9. Percentage of error in the velocity of translation (19 = 0) versus m for a periodic array of 
single vortex rings. R = 4, r= 2. 

Remember that the vortex-in-cell (VIC) method used here implies periodic 
boundary conditions in each of the three dimensions. Thus the initial velocity will not 
be constant around the circumference of the ring (see Fig. 4). In general the influence 
of neighboring rings in the same plane is to decrease the local velocity of translation, 
close neighbors (along the axes) having a stronger influence than neighbors farther 
away (along the diagonals). This trend is shown in Fig. 5 where u, is seen to have 
maxima at 19 = 4Y, 135” ,..., and minima at B = 0”, 90° ,... . Note also the very good 
agreement of the present VIC calculation with the exact results. The effects of the 
16 x 16 x 16 mesh are seen to produce only a small-amplitude high-frequency error. 

The Gaussian width used in the Green’s function calculations was chosen to give 
the best fit to the vortex-in-cell results and was found to be u2 = 1.1 times the cell 
area. This is in good agreement with a theoretical estimate of o2 = 12/x2 N 1.2 based 
on a Gaussian fit to the low 1 kJ behavior of our filter. Recall that our filter is not 
strictly Gaussian but is brought smoothly to zero at 1 kl = z 

In Fig. 6 and 7, the minimum (8 = O”) and maximum (0 = 45”) velocities, respec- 
tively, are shown for different ring radii R. The agreement is very good over the entire 
range of ring radii. Figure 8 shows the lateral vortex profile in the (x - z) plane at 
four instants. Some small deformation at later times is noticeable due to the nonsym- 
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FIG. 10. Displacement of a pair of vortex rings (R = 4) in a periodic space at ten instants. r= 2. 

metric influence of images. We also investigated the error due to the discretization of 
the ring as discussed in Section 3.1. In Fig. 9, we show the percentage of error in the 
velocity of translation (e= 0) due to this effect as a function of the number of 
markers m used. Note a l/m* dependence and the small error the discretization used 
in this study, 0.0138% for m = 360. 

A second test was done on a set of two vortex rings of radius R = 4 about the z 
axis. Their centers are initially located at (8,8, 7) and (8,8, 10) in the mesh and 
thereafter move also along the z axis. Both have the same circulation r= 2. As 
before At = 0.03 and m = 360 for each ring. 

We know that two similar vortex rings at some distance apart on a common axis 
of symmetry will do the following: The velocity field associated with the rear vortex 
ring has a radially outward component at the position of the front ring and so the 
radius of the front ring gradually increases (with r constant). This leads to a decrease 
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FIG. 11. Continuation of Fig. 10. 

in its velocity of translation, and there is a corresponding increase in the velocity of 
translation of the rear vortex which ultimately passes through the larger vortex and in 
turn becomes the front vortex. The process is then repeated. Indeed, we observed that 
process. The last live figures (Figs. 10-14) show the displacement in the (x-z) plane 
and the (x-u) plane at 10 instants. We see the rings going through each other 
repeatedly and the build-up of distortions due to the influence of images. 

To test our scheme for translation invariance, we recomputed the above two-ring 
case with the ring centers each displaced initially by (j, 4, $) from the first 
calculation. Figures 15 and 16 give the comparison of the results at t = 100 and 
t = 150. At t = 100, differences between the two cases are barely perceptible while at 
t = 150, the side views in particular show noticeable differences, undoubtedly due to 
the accumulation of very small differences at each time step. 
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5. CONCLUSIONS 

A new vortex-in-cell method for the numerical simulation of three-dimensional 
incompressible flows has been developed. The computational elements are vortex 
filaments whose motion is given by the velocity field the filaments themselves 
produce. High efficiency is obtained by creating a mesh record of the vorticity field, 
integrating Poisson’s equation via fast Fourier transforms to obtain the velocity field 
on the mesh, and then interpolating velocities back onto the filaments. High accuracy 
is obtained by a carefully constructed quadratic spline interpolation scheme and by 
filtering in wavenumber space to impose a Gaussian vorticity distribution within the 
core of each filament. The filtering process also provides subgrid dissipation. 

As shown in the computed motion of vortex rings, our Lagrangian treatment of the 
vorticity allows the convection of flow structures over long distances without 
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diffusive effects caused by differencing of convective derivatives. In testing the 
numerical method, no undesirable grid effects or numerical instabilities were found. 

6. APPENDIX 

On one hand, using the series expansion for sine, we have letting 
k * [(rj-rj-1)/2] =&/y 

sm = 1 _ + c/’ + & E; - . . . . 
‘1 



324 COUGT, BUNEMAN, AND LEONARD 

x 

t = 175 

t = 230 

t = 175 

FIG. 14. Continuation of Fig. 13. 

On the other hand, we obtained in (3.1) 

&(k)=r x (rj-rj-l)Ij, 
j=l 

where Ij stands for (i exp(-zk . [bj + (1 - r) rj- ,]) d(. A Gaussian type integration 
[28] can be used to evaluate Ij, keeping the approximation down to the sum of two 
exponentials. Using the zeros of the second-order Legendre polynomial: 

&(X)=+(3X*- l)=O, 
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FIG. 15. Comparison in the displacement of a pair of vortex rings (R = 4) in a periodic space. Top: 
rings with centers at (8, 8, 7) and (8, 8, IO) initially. Bottom: rings with centers at (7.5, 7.5, 7.5) and 
(7.5. 7.5, 10.5) initially. 

which implies xi = +3-l/= and x2 = -3-‘12, we obtain 

Zj=t{eXp(-ik*t[(l +3-“2)tj+(1 -3-1’2)rj-,]) 

+exp(-zk.+[(l -3-‘/2)rj+(1 -t3-1/2)rj-,])} 

+ Error, 

where 

1 Error I= [k * (rj-rj-I)]” 
135 exp(-ik. [@j+(l-i;)rj+,])i, O<<< 1, 
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FIG. 16. Same as Fig. 15 at a later time. 

This accuracy to the third order in cj is shown in the resulting approximation of 

e sin cj N -ej3-v2 + @j3-U* 

- 

&J 
2 

=cos AL =1-G 

( 1 

4 

3 W 6 +-&- . . . . 
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